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Epidemic renewal models and sequential Monte Carlo

An intro/refresher on the 
renewal model

An intro/refresher on  
SMC methods

A (small) handful of real-
world results

Who is this talk for?

Public health 
epi

(Statistical) 
modeller

Statistical 
epidemiologist



Renewal Models

Epidemic renewal models and sequential Monte Carlo

Sequential Monte Carlo

A simple model of an epidemic A method for fitting hidden-state models

Ct ∼ Poisson (Rt

ωmax

∑
u=1

Ct−uωu)
 Used for reproduction number estimation


 Also forecasting, elimination, effect of NPIs, etc


 EpiEstim/EpiNow2/EpiFilter all use it

Can handle any sequential model


Also known as “particle filters”


Very flexible!
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Epidemic renewal models and sequential Monte Carlo

• Originally attributed to Euler in 1767, modelling population dynamics


• Lotka gave us the current (continuous time form) in 1907:

B(t) = ∫
t

0
B(t−a)p(a)v(a) da

births P(survival) fertility
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Epidemic renewal models and sequential Monte Carlo

• Originally attributed to Euler in 1767, modelling population dynamics


• Lotka gave us the current (continuous time form) in 1907:

B(t) = ∫
t

0
B(t−a)p(a)v(a) da

births P(survival) fertility

• Adapted to infections by Kermack and McKendrick (1927)*

infections P(infectious) infectiousness
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• A more familiar form was introduced in (Diekmann, 1977)*:

I(t) = ∫
t

0
I(t − τ)A(τ) dτ
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• A more familiar form was introduced in (Diekmann, 1977)


• Adapted to allow for time-varying average infectiousness:

I(t) = ∫
t

0
I(t − τ)A(t, τ) dτt



The renewal model

Epidemic renewal models and sequential Monte Carlo

• A more familiar form was introduced in (Diekmann, 1977)


• Adapted to allow for time-varying average infectiousness, then


• (Fraser, 2007) separated infectiousness into the reproduction number 
and the generation time distribution*:

I(t) = R(t)∫
t

0
I(t − τ)ω(τ) dτR(t) ω(τ)



The renewal model

Epidemic renewal models and sequential Monte Carlo

• A more familiar form was introduced in (Diekmann, 1977)


• Adapted to allow for time-varying average infectiousness, then


• (Fraser, 2007) separated infectiousness into the reproduction number 
and the generation time distribution


• and introduced the discrete-time analogue:

It = Rt

t

∑
τ=0

It−τωτ

• Which was then popularised by the EpiEstim software package 
(Cori et al, 2013)
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A toy example

Reproduction number over time

A serial interval distribution
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Someone infected two days ago…
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… will infect an average of 0.5 people yesterday, …
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… an average of 1 person today, and…
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… an average of 0.25 people tomorrow.
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So… 

How many total cases 
do we expect today?
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The renewal model

Epidemic renewal models and sequential Monte Carlo

• This is a very flexible model

Pointwise estimates of Rt Smoothed estimates of Rt + observation noise

×

=

P(Rt |Rt−1) = N(Rt−1, σ)
Dynamic model for Rt

Observation model
P(Ct |Rt, C1:t−1) = Poiss (Rt ∑ Ct−uωu)

×

=

P(Rt)
Prior for Rt

Likelihood
P(Ct |Rt, C1:t−1) = Poiss (Rt ∑ Ct−uωu)

P(Rt |C1:t)
Posterior for Rt

P(Rt |C1:t)
Posterior for Rt

P(Rt |C1:t)
Posterior for Rt

P(Rt |Rt−1) = N(Rt−1, σ)
Dynamic model for Rt

Dynamic model for It
P(It |Rt, I1:t−1) = Poiss (Rt ∑ It−uωu)

×

×

Observation model
P(Ct | It) = Binomial (It, ρ)

=
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Sequential Monte Carlo

A simple model of an epidemic A method for fitting hidden-state models

Ct ∼ Poisson (Rt

ωmax

∑
u=1

Ct−uωu)
 Used for reproduction number estimation


 Also forecasting, elimination, effect of NPIs, etc


 EpiEstim/EpiNow2/EpiFilter all use it

Also known as “particle filters”


Very flexible!


Can account for many biases at once



Sequential Monte Carlo

Epidemic renewal models and sequential Monte Carlo

• Origins in importance sampling and Bayesian filtering/smoothing 
(e.g. Kalman filters)


• Bootstrap filter (Gordon, 1993): the first method for non-linear non-
Gaussian state-space models


• Then advanced by Doucet, Del Moral, Chopin, Kantas, Andrieu and 
many others*


• We consider hidden-state estimation and parameter estimation 
separately 


(These names are listed as they are associated with helpful tutorial/summary/overview papers!)



…fits a hidden-state model

RtRt−1 Rt+1

Ct Ct+1Ct−1

Dynamic model for Rt

Observation model for cases

Sequential Monte Carlo: the bootstrap filter…

Epidemic renewal models and sequential Monte Carlo

P(Rt |Rt−1)

P(Ct |Rt, C1:t−1)

If we can sample from this

and evaluate this,

then we can use SMC methods.



Sequential Monte Carlo: the bootstrap filter

Rt

We update these samples at        by:t+1

1. Projecting according to the dynamic model


2. Weighting according to the observation model


 

3.Resampling projected “particles”, giving:

R̃(i)
t+1 ∼ P(Rt+1 |R(i)

t )

Wi,t+1 = P(Ct+1 | R̃(i)
t+1, C1:t)

R(i)
t+1 ∼ P(Rt+1 |C1:t+1), i = 1,…, N

Epidemic renewal models and sequential Monte Carlo

Assume we have samples:

R(i)
t ∼ P(Rt |C1:t), i = 1,…, N
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A simple example…
log Rt |Rt−1 ∼ Normal(log Rt−1, σ)

* Reported case data are from the first 100 days of 
the COVID-19 outbreak in New Zealand 

*

Dynamic model for Rt

Observation model

Ct ∼ Poisson (Rt

ωmax

∑
u=1

Ct−uωu)
The entire algorithm requires only 11 lines of code:



Epidemic renewal models and sequential Monte Carlo

Imported cases, reporting noise, and elimination

log Rt |Rt−1 ∼ Normal(log Rt−1, σ)

Dynamic model for Rt

Observation model

It |Rt, I1:t−1 ∼ Poisson (Rt

ωmax

∑
u=1

(It−u + Mt−u)ωu)

Ct ∼ Negative binomial(⋯)

Probability of elimination estimated by 
simulating the model forward two weeks and 
checking whether any new infections occur.



Sequential Monte Carlo: Parameter estimation

Epidemic renewal models and sequential Monte Carlo

• A much harder and more expensive problem!


• We use Particle Marginal Metropolis Hastings 
(PMMH)

log Rt |Rt−1 ∼ Normal(log Rt−1, σ)
Dynamic model for Rt

Observation model

Ct ∼ Poisson (Rt

ωmax

∑
u=1

Ct−uωu)

σ



Sequential Monte Carlo: Parameter estimation

Epidemic renewal models and sequential Monte Carlo

• Predictive decomposition of the likelihood:

L(θ) = P(C1:T |θ) = P(C1 |θ)
T

∏
t=2

P(Ct |C1:t−1, θ)

• Where the one-step-ahead likelihood is just the average of the 
bootstrap filter weights:

P(Ct |C1:t−1, θ) = ERt|C1:t−1
[P(Ct |Rt, C1:t−1, θ)] ≈

1
N

N

∑
i=1

Wt,i



Sequential Monte Carlo: Parameter estimation

Epidemic renewal models and sequential Monte Carlo

• To estimate the log-likelihood, we run the bootstrap filter and calculate:

̂ℓ(θ) =
T

∑
t=1

log W̄t

• Then just plug this into a standard Metropolis Hastings algorithm!


• Need to be careful about ….S . D . ( ̂ℓ(θ))



Sequential Monte Carlo: Overall approach

Epidemic renewal models and sequential Monte Carlo
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Example: Temporal effects

Three observation models:

•  Naive


•  Day-of-week effect


•  Weekly aggregated
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Some final thoughts… Website

Preprint

Advantages of these methods and models

✓ Simple, intuitive, highly flexible


✓ Requires no external software


✓ No complicated mathematical approximations


✓ Produces well-calibrated estimates and predictions

x Far less established than existing methods in epi


x Can struggle with high-dimensional 


x Sequential nature is still somewhat restrictive

θ

Disadvantages

nicholas.steyn@univ.ox.ac.uk


