Epidemic renewal models and sequential Monte Carlo

Nicholas Steyn - 30 May 2025 Bioinference

Who is this talk for?

An intro/refresher on SMC methods

(Statistical) modeller

Public health epi

An intro/refresher on the renewal model

A (small) handful of realworld results Statistical epidemiologist

Renewal Models

A simple *model* of an epidemic

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

Used for reproduction number estimation

Also forecasting, elimination, effect of NPIs, etc

EpiEstim/EpiNow2/EpiFilter all use it

Sequential Monte Carlo

A *method* for fitting hidden-state models

Can handle any sequential model

Also known as "particle filters"

Very flexible!

Renewal Models

A simple *model* of an epidemic

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

Used for reproduction number estimation

Also forecasting, elimination, effect of NPIs, etc

EpiEstim/EpiNow2/EpiFilter all use it

- Originally attributed to Euler in 1767, modelling population dynamics
- Lotka gave us the current (continuous time form) in 1907:

- Originally attributed to Euler in 1767, modelling population dynamics
- Lotka gave us the current (continuous time form) in 1907:

Adapted to infections by Kermack and McKendrick (1927)*

• A more familiar form was introduced in (Diekmann, 1977)*:

$$I(t) = \int_0^t I(t - \tau) A(\tau) d\tau$$

- A more familiar form was introduced in (Diekmann, 1977)
- Adapted to allow for time-varying average infectiousness:

$$I(t) = \int_0^t I(t - \tau) A(t, \tau) d\tau$$

- A more familiar form was introduced in (Diekmann, 1977)
- Adapted to allow for time-varying average infectiousness, then
- (Fraser, 2007) separated infectiousness into the reproduction number and the generation time distribution*:

$$I(t) = R(t) \int_0^t I(t - \tau)\omega(\tau) d\tau$$

- A more familiar form was introduced in (Diekmann, 1977)
- Adapted to allow for time-varying average infectiousness, then
- (Fraser, 2007) separated infectiousness into the reproduction number and the generation time distribution
- and introduced the discrete-time analogue:

$$I_t = R_t \sum_{\tau=0}^t I_{t-\tau} \omega_{\tau}$$

• Which was then popularised by the EpiEstim software package (Cori et al, 2013)

A toy example

Reproduction number over time

Someone infected two days ago...

day t-2

Day
$$t-1$$
 $R_{t-1} = 2$, $\omega_1 = 0.25$

... will infect an average of 0.5 people yesterday, ...

Primary case on

day t-2

... an average of 1 person today, and...

... an average of 0.25 people tomorrow.

So...

How many total cases do we expect today?

This is a very flexible model

Prior for
$$Rt$$

$$P(R_t)$$

Likelihood
$$P(C_t | R_t, C_{1:t-1}) = Poiss\left(R_t \sum C_{t-u}\omega_u\right)$$

Posterior for Rt $P(R_t \mid C_{1:t})$

Dynamic model for
$$Rt$$

$$P(R_t | R_{t-1}) = N(R_{t-1}, \sigma)$$
×

Observation model $P(C_t | R_t, C_{1:t-1}) = Poiss\left(R_t \sum C_{t-u} \omega_u\right)$

> Posterior for Rt $P(R_t \mid C_{1:t})$

Pointwise estimates of Rt Smoothed estimates of Rt

Dynamic model for Rt
$$P(R_t | R_{t-1}) = N(R_{t-1}, \sigma)$$
×

Dynamic model for It
$$P(I_t|R_t,I_{1:t-1}) = Poiss\left(R_t \sum I_{t-u}\omega_u\right)$$

Observation model

$$P(C_t|I_t) = Binomial(I_t, \rho)$$

Posterior for Rt $P(R_t \mid C_{1:t})$

+ observation noise

Renewal Models

A simple *model* of an epidemic

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

Used for reproduction number estimation

Also forecasting, elimination, effect of NPIs, etc

EpiEstim/EpiNow2/EpiFilter all use it

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

Sequential Monte Carlo

A *method* for fitting hidden-state models

Also known as "particle filters"

Very flexible!

Can account for many biases at once

Sequential Monte Carlo

- Origins in importance sampling and Bayesian filtering/smoothing (e.g. Kalman filters)
- Bootstrap filter (Gordon, 1993): the first method for non-linear non-Gaussian state-space models
- Then advanced by Doucet, Del Moral, Chopin, Kantas, Andrieu and many others*
- We consider hidden-state estimation and parameter estimation separately

(These names are listed as they are associated with helpful tutorial/summary/overview papers!)

Assume we have samples:

$$R_t^{(i)} \sim P(R_t | C_{1:t}), \quad i = 1, ..., N$$

We update these samples at t+1 by:

1. Projecting according to the dynamic model

$$\tilde{R}_{t+1}^{(i)} \sim P(R_{t+1} | R_t^{(i)})$$

2. Weighting according to the observation model

$$W_{i,t+1} = P(C_{t+1} | \tilde{R}_{t+1}^{(i)}, C_{1:t})$$

$$R_{t+1}^{(i)} \sim P(R_{t+1} | C_{1:t+1}), \quad i = 1,...,N$$

Assume we have samples:

$$R_t^{(i)} \sim P(R_t | C_{1:t}), \quad i = 1,...,N$$

We update these samples at t+1 by:

1. Projecting according to the dynamic model

$$\tilde{R}_{t+1}^{(i)} \sim P(R_{t+1} | R_t^{(i)})$$

2. Weighting according to the observation model

$$W_{i,t+1} = P(C_{t+1} | \tilde{R}_{t+1}^{(i)}, C_{1:t})$$

$$R_{t+1}^{(i)} \sim P(R_{t+1} | C_{1:t+1}), \quad i = 1,...,N$$

Assume we have samples:

$$R_t^{(i)} \sim P(R_t | C_{1:t}), \quad i = 1,...,N$$

We update these samples at t+1 by:

1. Projecting according to the dynamic model

$$\tilde{R}_{t+1}^{(i)} \sim P(R_{t+1} | R_t^{(i)})$$

2. Weighting according to the observation model

$$W_{i,t+1} = P(C_{t+1} | \tilde{R}_{t+1}^{(i)}, C_{1:t})$$

$$R_{t+1}^{(i)} \sim P(R_{t+1} | C_{1:t+1}), \quad i = 1,...,N$$

Assume we have samples:

$$R_t^{(i)} \sim P(R_t | C_{1:t}), \quad i = 1,...,N$$

We update these samples at t+1 by:

1. Projecting according to the dynamic model

$$\tilde{R}_{t+1}^{(i)} \sim P(R_{t+1} | R_t^{(i)})$$

2. Weighting according to the observation model

$$W_{i,t+1} = P(C_{t+1} | \tilde{R}_{t+1}^{(i)}, C_{1:t})$$

$$R_{t+1}^{(i)} \sim P(R_{t+1} \mid C_{1:t+1}), \quad i = 1,...,N$$

A simple example...

* Reported case data are from the first 100 days of the COVID-19 outbreak in New Zealand

Dynamic model for R_t

 $\log R_t | R_{t-1} \sim \text{Normal}(\log R_{t-1}, \sigma)$

Observation model

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

The entire algorithm requires only 11 lines of code:

```
# Setup:
N = 100000 # Number of particles

ω = pdf.(Gamma(2.36, 2.74), 1:100) # Serial interval
Y = loadData("NZCOVID") # Load data
R = zeros(N, 100) # Matrix to store particle values (of log Rt)

# Run the bootstrap filter:
R[:,1] = log.(rand(Uniform(0, 10), N)) # Sample initial values
for tt = 2:100
    R[:,tt] = rand.(Normal.(R[:,tt-1], 0.2)) # Project (log) Rt
    Λ = sum(Y.Ct[(tt-1):-1:1] .* ω[1:(tt-1)]) # Calculate the force of infection
    W = pdf.(Poisson.(Λ * exp.(R[:,tt])), Y.Ct[tt]) # Calculate weights
    R[1:N, max(tt-40, 1):tt] = R[wsample(1:N, W, N), max(tt-40, 1):tt] # Resample
end
```

Imported cases, reporting noise, and elimination

Dynamic model for R_t

$$\log R_t | R_{t-1} \sim \text{Normal}(\log R_{t-1}, \sigma)$$

$$I_t | R_t, I_{1:t-1} \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} (I_{t-u} + M_{t-u})\omega_u\right)$$

Observation model

 $C_t \sim \text{Negative binomial}(\cdots)$

Probability of elimination estimated by simulating the model forward two weeks and checking whether any new infections occur.

Sequential Monte Carlo: Parameter estimation

- A much harder and more expensive problem!
- We use Particle Marginal Metropolis Hastings (PMMH)

Dynamic model for R_t

 $\log R_t | R_{t-1} \sim \text{Normal}(\log R_{t-1}, \sigma)$

Observation model

$$C_t \sim \text{Poisson}\left(R_t \sum_{u=1}^{\omega_{max}} C_{t-u} \omega_u\right)$$

Sequential Monte Carlo: Parameter estimation

Predictive decomposition of the likelihood:

$$L(\theta) = P(C_{1:T}|\theta) = P(C_1|\theta) \prod_{t=2}^{T} P(C_t|C_{1:t-1},\theta)$$

 Where the one-step-ahead likelihood is just the average of the bootstrap filter weights:

$$P(C_t | C_{1:t-1}, \theta) = E_{R_t | C_{1:t-1}} [P(C_t | R_t, C_{1:t-1}, \theta)] \approx \frac{1}{N} \sum_{i=1}^{N} W_{t,i}$$

Sequential Monte Carlo: Parameter estimation

• To estimate the log-likelihood, we run the bootstrap filter and calculate:

$$\hat{\ell}(\theta) = \sum_{t=1}^{T} \log \bar{W}_t$$

- Then just plug this into a standard Metropolis Hastings algorithm!
- Need to be careful about $S.D.(\hat{\ell}(\theta))...$

Sequential Monte Carlo: Overall approach

Three observation models:

- Naive
- Day-of-week effect
- Weekly aggregated

Some final thoughts...

Advantages of these methods and models

- ✓ Simple, intuitive, highly flexible
- √ Requires no external software
- √ No complicated mathematical approximations
- ✓ Produces well-calibrated estimates and predictions

<u>Disadvantages</u>

- x Far less established than existing methods in epi
- $\mathbf x$ Can struggle with high-dimensional θ
- x Sequential nature is still somewhat restrictive

nicholas.steyn@univ.ox.ac.uk

