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Who is this talk for?

An intro/refresher on
SMC methods

An intro/refresher on the Statistical
renewal model epidemiologist
Public health
epi
A (small) handful of real-
world results
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Renewal Models Sequential Monte Carlo

A simple model of an epidemic A method for fitting hidden-state models

C, ~ Poisson (Rt 2 Ct—ua)u)

u=1

Used for reproduction number estimation Can handle any sequential model
Also forecasting, elimination, effect of NPIs, etc Also known as “particle filters”

EpiEstim/EpiNow2/EpiFilter all use it Very flexible!
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A simple model of an epidemic

C, ~ Poisson (Rt Z Ct—ua)u>

u=1

Used for reproduction number estimation
Also forecasting, elimination, effect of NPIs, etc

EpiEstim/EpiNow2/EpiFilter all use it
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The renewal model

* Originally attributed to Euler in 1767, modelling population dynamics

* Lotka gave us the current (continuous time form) in 1907

B(t) = J' B(t—a)p(a)v(a) da
N2 TSN

births  P(survival) fertility
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The renewal model

* Originally attributed to Euler in 1767, modelling population dynamics

* Lotka gave us the current (continuous time form) in 1907

B(t) = J' B(t—a)p(a)v(a) da

N2 TSN

i S kit
| | |

iInfections  P(infectious) infectiousness

* Adapted to infections by Kermack and McKendrick (1927)*
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The renewal model

* A more familiar form was introduced in (Diekmann, 1977)*:

() = J I[(t — 7)A(7) dt

0
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The renewal model

* A more familiar form was introduced in (Diekmann, 1977)

* Adapted to allow for

I(f) = J I(t — D)A(, 7) dr
0
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The renewal model

* A more familiar form was introduced in (Diekmann, 1977)
 Adapted to allow for time-varying average infectiousness, then

e (Fraser, 2007) separated mfectlousness Into the
and the

[
I(t) = R( { [(t —71)w(r) dr
0
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The renewal model

* A more familiar form was introduced in (Diekmann, 1977)
 Adapted to allow for time-varying average infectiousness, then

* (Fraser, 2007) separated infectiousness into the reproduction number
and the generation time distribution

e and introduced the

{
I, = th l,_ o,
=0

* Which was then popularised by the EpiEstim software package
(Cori et al, 2013)
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The renewal model

A toy example

Reproduction number over time

A serial interval distribution

R, . W /

A (serial interval dist.)

2 >—\ 0.5 -2
1 0.25

2 3

Time
since infection
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The renewal model

Someone infected two days ago...

fo—

Primary case on
day t—2

A : A (serial interval dist.)

2 >—\ 0.5 -2
1 0.25

3 Time

since infection
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The renewal model

N Day t—1

y ’ o R 1 =2, w; =0.25
2 ... WIll Infect an average of 0.5 people yesterday, ...

Primary case on
day t—2

A : A (serial interval dist.)

2 >—\ 0.5 -2
1 0.25

3 Time

since infection
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The renewal model

////(T Day t—1
Rt_lwl - /Il/ Rt_1 — 2, W1 = 0.25
D / :,--: _____________________________
2 Do :
Ry w Wi\ ay ;
@ ——— YN Ry 0, -05 ¢ ...an average of 1 person today, and...
Primary case on L__'_':\_ ___________________________
day t—2
Ry oy
A

Time
since infection
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The renewal model

Primary case on Roiiw EL__II“_/:‘\’___________________________j
day t—2 \ .
N Day t+1
A gTC0 L _0o === an average of 0.25 people tomorrow.

2 >—\ 0.5
1 0.25

t—1 t t+1

Time
since infection

Time
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The renewal model

y J ' Rt_l - 2’ w1 = 025 E
2 . So
. | EEE

AL ST e How many total cases
\ A Dayt+l do we expect today?

3 Time

since infection
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The renewal model

Primary case on U8 :
day t—2 ]%FFUU3 HmTmmToomomooooomoomoooooooooo
A Day t+1
- Rip1 =1, ws =0.25

L e (MR

Time Time | t—3 t— t—1 t Time

since infection

=Jo =3e

t—1 t t+1

DO
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The renewal model

Primary case on U8 :
day t—2 ]%FFUU3 HmTmmToomomooooomoomoooooooooo
A Day t+1
- Rip1 =1, ws =0.25

Time Time | t—3 t— t—1 t Time

since infection

=)o =)o |

t—1 t t+1

DO
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The renewal model

Primary case on A | E : /\/_\_\ : +
day t—2 Hi1ws TmmTmmrmermemoemoemoenonoe | ¥7 1%
A Day t+1 ; S A B
Riyi=1, w3 =025 | RCyows

i
2 0.5 E S
: 5 O O
1 0.25 | T T
: Ll_ L | — .

Time Time | t—3 t— t—1 t Time

since infection

=)o =)o

t—1 t t+1

DO
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The renewal model

A Day t—1 ' Cases
% | ; E\C
Rt_lwl //II/ Ri_1 = 2, w; = 0.25 A [ t]
. D - TR T
12wy N, Dayt - E A | [RCpgws
) : /l/\‘l\ Rt:27w2:O5 : | : : L
Primary case on : A ; : : _:_! o |
day t—2 A L T E E I AN E
A Day t+1 . g i\ :
o Rt_|_1 — 1, W3 =— 0.25 : - : RtCt_sz
| Q @ [ :
Rt I w I % T : /: ll\ :
4 ! A (serial interval dist.) | A i
2 I 0.5 ; L
N\ | O O @ | 5
1 i 0.25 E T % T _’E E tht_lwl
S JSELIELLEEELIESLLE -
t—1 ¢ t+1 Time : Time : t—3 t—2 t—1 t Time

since infection
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The renewal model ~ Dynamic model for Rt
. : P(Rt‘Rt—l) — N(Rt—la 0)
* This is a very flexible model

X
Prior for Rt Dynamic model for Rt Dynamic model for It
P(Rt) P(Rt | Rt—l) = N(Rt—l’ 0) P(1,|R;, 1,.,_,) = Poiss (th It—uwu>
Likelihood Observation model Observation model
P(C,|R,, C,._,) = Poiss <Rt2 Ct_ua)u) ~ P(G|R.Cy,_) = Poiss (th Ct_a)> P(C,|I)) = Binomial (I, p)
Posterior for Rt Posterior for Rt Posterior for Rt
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A simple model of an epidemic

C, ~ Poisson (Rt Z Ct—ua)u)

u=1

Used for reproduction number estimation
Also forecasting, elimination, effect of NPIs, etc

EpiEstim/EpiNow2/EpiFilter all use it
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A method for fitting hidden-state models

Also known as “particle filters”
Very flexible!

Can account for many biases at once
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Sequential Monte Carlo

* Origins in and
(e.g. Kalman filters)

o : the first method for non-linear non-
Gaussian state-space models

 Then advanced by Doucet, Del Moral, Chopin, Kantas, Andrieu and
many others™

* We consider hidden-state estimation and parameter estimation
separately

(These names are listed as they are associated with helpful tutorial/summary/overview papers!)
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Sequential Monte Carlo: the bootstrap filter...

...fits a hidden-state model Dynamic model for Rt

P(R,|R,_;)

so" e,

o S o* S o A
. . .
Iy Iy Iy
N s N . >}
a
> =N I§ p B IE p B IE >
[ ]
. t_l N . t N -‘ t+1 N
% o e o % o
e * e * e *
Qg Qg Qgpgse
v

Observation model for cases
'l)((:t‘leﬂ’(jIJF-l)
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Sequential Monte Carlo: the bootstrap filter

Assume we have samples:

U =
R PR,|Cy,), 1=1,..,N We update these samples at 7+ 1 by:

1. Projecting according to the dynamic model
Rgl ~ P(Rt+1 ‘Rt(i))

2. Weighting according to the observation model

l

Wik = P(Cyy ‘Rgla Ci.)

\

b 3.Resampling projected “particles”, giving:

RY ~ PR |Cipyy)s i=1,...,N
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Sequential Monte Carlo: the bootstrap filter

Assume we have samples:

U =
R PR,|Cy,), 1=1,..,N We update these samples at 7+ 1 by:

Step 1 1. Projecting according to the dynamic model
Rt Projection

Rgl ~ P(Rt+1 ‘Rt(i))

,,,, 2. Weighting according to the observation model
"""" ,s"“
T — 30
IR Wi = P(Cyy ‘Rt+1’ Ci.p)

; _— 3.Resampling projected “particles”, giving:

RY ~ PR |Cipyy)s i=1,...,N
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Sequential Monte Carlo: the bootstrap filter

Assume we have samples:

U =
R PR,|Cy,), 1=1,..,N We update these samples at 7+ 1 by:

Step 1 Step 2 1. Projecting according to the dynamic model
R Projection = Weighting
5 ~ .
R§21 ~ P(R,y, |R?)
,,,, Wi =1 2. Weighting according to the observation model

'''' ",Wz t+1; WS,t+2 =

\ / / ..... Wi =0 Wi =P (Crpi |R§21’ Ci.)

" ~ W5,t+1 = ( - . 0 . 39 =

; _— 3.Resampling projected “particles”, giving:

RY ~ PR |Cipyy)s i=1,...,N
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Sequential Monte Carlo: the bootstrap filter

Assume we have samples:

RY ~P(RR,|Cyp, i=1,.,N

Step 3

R |
R, esampling

"
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We update these samples at 7+ 1 by:

1. Projecting according to the dynamic model
Rgl ~ P(Rt+1 ‘Rt(i))

2. Weighting according to the observation model

l

Wik = P(Cyy ‘Rgla Ci.)

3.Resampling projected “particles”, giving:

RY ~ PR |Cipyy)s i=1,...,N

STATISTICS
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A simple example... Dynamic model for R,
logR,|R,_; ~ Normal(logR,_,, )

00
o
1

B |mported cases
B Local cases

(@)
o

Observation model

max

f)
C.~Poisson| R, ) C_ o,

Reported cases*
N
o

20 u=1
° 12020-03-01 2020-04-01 2020-05-01 2020-06-01
Date . . . .
The entire algorithm requires only 11 lines of code:
_ # Setup:
L 8t ——-Rt=1 N = 100000 # Number of particles
:E,g w = pdf.(Gamma(2.36, 2.74), 1:100) # Serial interval
286 i Y = loadData("NzZCOVID") # Load data
Swqgl R = zeros(N, 100) # Matrix to store particle values (of log Rt)
g o
°E .
ggZ - # Run the bootstrap filter:
Q L S—————— 7 R[:,1] = log.(rand(Uniform(@, 10), N)) # Sample initial values
2020-03-01 2020-04-01 2020-05-01 2020-06-01 for tt = 2:100
Date R[:,tt] = rand.(Normal. (R[:,tt-1], 0.2)) # Project (log) Rt

AN = sum(Y.Ct[(tt-1):-1:1] .* w[l:(tt-1)]) # Calculate the force of infection
W = pdf.(Poisson. (A x exp.(R[:,tt])), Y.Ct[tt]) # Calculate weights

* Reported case data are from the first 100 days of R[1:N, max(tt-40, 1):tt] = R[wsample(1:N, W, N), max(tt-40, 1):tt] # Resample

the COVID-19 outbreak in New Zealand I
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Imported cases, reporting noise, and elimination

2.5 F
- Dynamic model for R,
g 15 | logR. |R,_; ~ Normal(logR,_,, o)
g 1.0 Dnax
8 L|R,I,.,_, ~Poisson (R, Z (l_,+ Mt—u)a)u)
Q 05 }
9 u=1
0.0 ' : | '
2020-03-01 2020-04-01 2020-05-01 2020-06-01
bate Observation model
8 % i X Observed e e 1 100 B C, ~ Negative binomial(:--)
TS; °0 T i i 4 0.75 g
; i i o
- 40T [T 1050 > . . . . .
£ Ti = Probability of elimination estimated by
S 20 F 2 : .
k3 i 1% 3 simulating the model forward two weeks and
T o0 = checking whether any new infections occur.
2020-03-01 2020-04-01 2020-05-01 2020-06-01

Date

) epamar o Epidemic renewal models and sequential Monte Carlo




Sequential Monte Carlo: Parameter estimation

Dynamic model for R,
* A much harder and more expensive problem! log R,| R,_ ~ Normal(logR,_;, o)

Observation model

 \We use C, ~ Poisson (Rtiaxq_uwu>

u=1
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Sequential Monte Carlo: Parameter estimation

* Predictive decomposition of the likelihood:

T
L(0) = P(C,.r10) = P(C 10| | P(C, | C,.,_ 1. 0)
) D e e —

* Where the one-step-ahead likelihood is just the average of the
bootstrap filter weights:

— | 1 N
P(Ct‘ Cl:t—l’ 9) — ERtlcl:t—l[P(Ct ‘ Rt’ Cl:t—l’ 9)] ~ N Z Wt’i

=1
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Sequential Monte Carlo: Parameter estimation

* To estimate the log-likelihood, we run the bootstrap filter and calculate:

T
£0) = ) logW,
=1

* Then just plug this into a standard Metropolis Hastings algorithm!

» Need to be careful about S. D . (2(6’))....
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Sequential Monte Carlo: Overall approach

Particle Marginal Metropolis Hastings
(PMMH)

Bootstrap filter

Xt

Posterior distribution of 0

hidden states
P(Xt‘ylzTa 9)

(conditional on 0)

Posterior distribution of
model parameters

P(9|y1:T)

—————————————————————————————————————————————————————————————————————————————————————————————————

Posterior distribution of
hidden states

P(Xt|y1:T)
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Example: Temporal effects

- Temporally aggregated
o 2.0 Day-of-week
QO Naive
-
-]
S 15
c
O
-
&5)
= 1.0 —
O
| -
o
Q
o 0.5
2024-04-01 2024-05-01 2024-06-01 2024-07-01 2024-08-01
Date
Temporally aggregated model Day-of-week model
at

X Observed cases

7)) 20000 [ n
0] 0]
wn wn
S > 15000 8,;
o X o=
o v U ©
tg 10000 |- £30
g2 R 2
@ 5000 | i* *i X o
o X2zl Xz

0 L. | | | X

2024-04-01 2024-05-01 2024-06-01 2024-07-01  2024-08-01
Date
Naive model
2500 g 14 r
0 o
Q2000 D 15
® =
| © Negp) )
- = 1500 S
U © 8 1.0
T 1000 =
3 S
|H ‘ = 0.8
Q _ m i e, ot T | e s
o 500 i It ||H| |l!;; 4 ||w ""W"sp“jff'-‘ , ©
SC1 111531 iOL! O

| 1
2024-06-01 2024-07-01
Date

| |
2024-04-01 2024-05-01 2024-08-01
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2024-04-01 2024-05-01

2024-06-01 2024-07-01
Date

2024-08-01

Sun

Wed Thur Fri Sat

Day of week

1500

(Vp)
3
s 1000
@)
©
Q
e
-
S
o 500
ad
0
2024-04-01 2024-05-01 2024-06-01
Date

2024-07-01

Three observation models:

* Naive
» Day-of-week effect

» Weekly aggregated
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Some final thoughts... Website

Advantages of these methods and models

v’ Simple, intuitive, highly flexible
v Requires no external software
v' No complicated mathematical approximations

v Produces well-calibrated estimates and predictions

Disadvantages

X Far less established than existing methods in epi

X Can struggle with high-dimensional &

X Sequential nature is still somewhat restrictive

nicholas.steyn@univ.ox.ac.uk
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