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Motivation

Epidemiological data are typically subject to biases and limitation.
No two datasets are the same.

↓
Many adaptations to popular epidemic models exist, each

accounting for a unique set of biases.

↓
Bespoke methods are often created to fit these models.

More biases =⇒ more complicated methods.

↓
Can we be more general?

Our approach

We employ SMC methods to solve hidden-state models. This
approach:

▶ Is simple, intuitive, and highly flexible

▶ Requires no external software

▶ Produces well-calibrated estimates and predictions

▶ Can simultaneously account for reporting biases,
aggregated/missing data, imported cases, multiple data
sources, and more.

Hidden-state models

Goal: use observed data y1:T to learn about “hidden states” X1:T

and/or parameter(s) θ.
A hidden-state model consists of:

State-space transition model: P (Xt|X1:t−1, θ)
Observation model: P (yt|X1:t−1, y1:t−1, θ)

Many epidemic models can be written in this form.

Figure 1: A diagram of a hidden Markov Model, a specific type of state-space
model where Xt depends only upon Xt−1 and yt depends only on Xt.

Sequential Monte Carlo (SMC) methods

Goal: generate samples from posterior distribution P (Xt|y1:T , θ).
Method: start with N initial “particles” (samples) {x0}Ni=1 ∼ P (X0)
and repeat three steps for each t = 1, . . . , T :
1. Projection step: Sample x̃

(i)
t ∼ P (Xt|x(i)1:t−1, θ)

2. Weighting step: Set W (i)
t = P (yt|x̃1:t, y1:t−1, θ)

3. Resampling step*: Resample {x(i)1:t}Ni=1 from {x̃(i)1:t} weighted
by {W (i)

t }

Figure 2: Diagram showing an SMC algorithm at time t with N = 5 particles
(although typically N ≥ 1000). The decreasing number of unique particles due
to resampling (“degeneracy”) is a common problem in SMC methods.

Note: Another algorithm called particle Marginal Metropolis Hast-
ings (PMMH) is used to find P (θ|y1:T ) (parameter estimation).
This can be used to marginalise out parameter uncertainty from
hidden-state estimates - a crucial step for robust estimation in any
Bayesian method! [1].

A simple example

We fit a Poisson renewal model to data from the COVID-19 pandemic in New Zealand, with Rt

smoothed using a Gaussian random walk. This is very similar to EpiFilter [2].

State-space transition model: logRt| logRt−1, σ ∼ N(logRt−1, σ = 0.2)
Observation model: Ct|Rt, C1:t−1 ∼ Poisson(RtΛt)

The force of infection is Λt =
∑umax

u=1 Ct−uωu while the PMF of the serial interval is {ωu}.

The entire SMC algorithm can be written in 7 lines of Julia code and takes < 2s to run:

Figure 3: Reported case data (left) and corresponding Rt estimates (right) from the simple model (fit to all cases).

An improved example

We want to consider:
▶ Parameter uncertainty
▶ Imported cases
▶ Reporting noise
▶ Elimination

probabilities
Let’s do it all at once!

State-space transition model:
logRt| logRt−1, σ ∼ N(logRt−1, σ)

It|Rt, I1:t−1 ∼ Poisson(RtΛt)

Observation model:
Ct|It, ϕ ∼ NegBin∗(µ = It, ϕ)
*Negative binomial distribution with mean It and

variance It(1 + Itϕ).

▶ It = local infections (unobs.)
▶ Mt = imported cases
▶ Ct = reported local cases
▶ Λt =

∑umax

u=1 (It−u +Mt−u)ωu

▶ σ = Rt smoothness
▶ ϕ = reporting overdispersion

Parameter estimates (using PMMH): σ = 0.19 (0.12, 0.30), ϕ = 0.018 (0.001, 0.063)

Figure 4: Probability of elimination (left, defined as no new local infections within next 28 days) and estimated Rt (right)
for New Zealand, after accounting for imported cases, reporting noise, and parameter uncertainty. All three adjust-
ments cause the substantial change in Rt estimates (with most credit going to the imported cases adjustment).

Parameter uncertainty has been accounted for by finding P (σ, ϕ|C1:T ) using PMMH and marginalising
out these uncertainties from the hidden-state estimates.
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We also highlight EpiNow2 [3] as a similarly-flexible alternative. Our methods are simpler (no
mathematical approximations or need for Stan), while EpiNow2 is better for estimation of high-
dimensional θ.


