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Epidemiological data are typically subject to biases and limitation.
No two datasets are the same.

!

Many adaptations to popular epidemic models exist, each
accounting for a unique set of biases.

|

Bespoke methods are often created to fit these models.
More biases =— more complicated methods.

!

Can we be more general?

Our approach

We employ SMC methods to solve hidden-state models. This
approach:

» Is simple, intuitive, and highly flexible

» Requires no external software

» Produces well-calibrated estimates and predictions

» Can simultaneously account for reporting biases,
aggregated/missing data, imported cases, multiple data
sources, and more.

Hidden-state models

Goal: use observed data v;.7 to learn about “hidden states” X;.»
and/or parameter(s) 6.

A hidden-state model consists of:

State-space transition model: P(X;| X ; 1,0)
Observation model: P(y:| X1 1,y14-1,0)

Many epidemic models can be written in this form.
Hidden states

State-space transition distribution
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Figure 1: A diagram of a hidden Markov Model, a specific type of state-space
model where X; depends only upon X;_; and y, depends only on X;.

Sequential Monte Carlo (SMC) methods

Goal: generate samples from posterior distribution P(X;|y.7, 8).
Method: start with V initial “particles” (samples) {z(}Y, ~ P(X))
and repeat three steps foreacht=1,....7"
1. Projection step: Sample :a@ ~ P(Xt|x§2_1, 0)
2. Weighting step: Set Wt(i> = P(y| 1.4, y1.4-1, 0)
3. Resampling step*: Resample {a:@}fi , from {iﬂ} weighted
by {W;"}
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Figure 2: Diagram showing an SMC algorithm at time ¢ with N = 5 particles
(although typically N > 1000). The decreasing number of unique particles due
to resampling (“degeneracy”) is a common problem in SMC methods.

Note: Another algorithm called particle Marginal Metropolis Hast-
ings (PMMH) is used to find P(0|y,.) (parameter estimation).
This can be used to marginalise out parameter uncertainty from
hidden-state estimates - a crucial step for robust estimation in any
Bayesian method! [1].
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We fit a Poisson renewal model to data from the COVID-19 pandemic in New Zealand, with R;
smoothed using a Gaussian random walk. This is very similar to EpiFilter [2].

State-space transition model: log R;|log R; 1,0 ~ N(log R; 1,0 = 0.2)
Observation model: C}|R;, C1+_ 1 ~ Poisson(R;\;)

u

The force of infection is Ay = >, " Cy_,w,, While the PMF of the serial interval is {w,}.

The entire SMC algorithm can be written in 7 lines of Julia code and takes < 2s to run:

# Setup:

= 100000 # Number of particles

= pdf.(Gamma(2.36, 2.74), 1:100) # Serial interval

= loadData("NZCOVID") # Load data

= zeros(N, 100) # Matrix to store particle values (of log Rt)

o < g 2

# Run the bootstrap filter:
R[:,1] = log.(rand(Uniform(@, 10), N)) # Sample initial values
for tt = 2:100
R[:,tt] = rand.(Normal. (R[:,tt-1], 0.2)) # Project (log) Rt
A = sum(Y.Ct[(tt-1):-1:1] .* w[l:(tt-1)]) # Calculate the force of infection
W = pdf.(Poisson. (A x exp.(R[:,tt])), Y.Ct[tt]) # Calculate weights
R[1:N, max(tt-40, 1):tt] = R[wsample(1:N, W, N), max(tt-40, 1):tt] # Resample

end
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Figure 3: Reported case data (left) and corresponding R; estimates (right) from the simple model (fit to all cases).

An improved example

We want to consider: | State-space transition model: » 1, — local infections (unobs.)

> Parameter uncertainty  log R;|log R;—1,0 ~ N(log Ri_1,0) M, = imported cases

> ;nportgd cases Ij| Ry, 141 ~ Poisson(R;A;) » C, = reported local cases

: El?p?r“?g Nnoise Observation model: > A= 00 (Deu + M) Wy

imination - _
orobabilities Gill;, 6 ~ NegBin'(u=1,¢) - » o = SmOOthneSZ
. *Negative binomial distribution with mean I, an > — reporting overdispersion

Let's do it all at once! e erance 1?<1t+ Itcﬁ)lfh e ’ " ’ "

Parameter estimates (using PMMH): ¢ = 0.19 (0.12,0.30), ¢ = 0.018 (0.001, 0.063)
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Figure 4: Probability of elimination (left, defined as no new local infections within next 28 days) and estimated R; (right)
for New Zealand, after accounting for imported cases, reporting noise, and parameter uncertainty. All three adjust-
ments cause the substantial change in R; estimates (with most credit going to the imported cases adjustment).

Parameter uncertainty has been accounted for by finding P(o, ¢|C1.7) using PMMH and marginalising
out these uncertainties from the hidden-state estimates.
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nicsteyn2.github.io/SMCforRt/

We also highlight EpiNow2 [3] as a similarly-flexible alternative. Our methods are simpler (no
mathematical approximations or need for Stan), while EpiNowZ2 is better for estimation of high-
dimensional 6.



