Solving general epidemic renewal models using sequential Monte Carlo

Nicholas Steyn (nicholas.steyn@univ.ox.ac.uk) Department of Statistics, University of Oxford

Motivation

Epidemiological data are typically subject to biases and limitation. No two datasets are the same.

Many adaptations to popular epidemic models exist, each accounting for a unique set of biases.

Bespoke methods are often created to fit these models. More biases \implies more complicated methods.

A simple example

We fit a Poisson **renewal model** to data from the COVID-19 pandemic in New Zealand, with R_t smoothed using a Gaussian random walk. This is very similar to EpiFilter [2].

> State-space transition model: $\log R_t | \log R_{t-1}, \sigma \sim N(\log R_{t-1}, \sigma = 0.2)$ **Observation model:** $C_t | R_t, C_{1:t-1} \sim \text{Poisson}(R_t \Lambda_t)$

The force of infection is $\Lambda_t = \sum_{u=1}^{u_{max}} C_{t-u} \omega_u$ while the PMF of the serial interval is $\{\omega_u\}$.

The entire SMC algorithm can be written in 7 lines of Julia code and takes < 2s to run:

- # Setup:
- N = 100000 # Number of particles
- $\omega = pdf.(Gamma(2.36, 2.74), 1:100) # Serial interval$

Can we be more general?

Our approach

We employ **SMC methods** to solve **hidden-state models**. This approach:

- ► Is simple, intuitive, and highly flexible
- Requires no external software
- Produces well-calibrated estimates and predictions
- Can simultaneously account for reporting biases, aggregated/missing data, imported cases, multiple data sources, and more.

Hidden-state models

Goal: use observed data $y_{1:T}$ to learn about "hidden states" $X_{1:T}$ and/or parameter(s) θ .

A hidden-state model consists of:

State-space transition model: $P(X_t|X_{1:t-1},\theta)$ **Observation model:** $P(y_t|X_{1:t-1}, y_{1:t-1}, \theta)$

Many epidemic models can be written in this form.

Y = loadData("NZCOVID") # Load data

R = zeros(N, 100) # Matrix to store particle values (of log Rt)

Run the bootstrap filter:

R[:,1] = log.(rand(Uniform(0, 10), N)) # Sample initial values for tt = 2:100

R[:,tt] = rand.(Normal.(R[:,tt-1], 0.2)) # Project (log) Rt

 $\Lambda = sum(Y.Ct[(tt-1):-1:1] * \omega[1:(tt-1)]) # Calculate the force of infection$

W = pdf.(Poisson.(A * exp.(R[:,tt])), Y.Ct[tt]) # Calculate weights

R[1:N, max(tt-40, 1):tt] = R[wsample(1:N, W, N), max(tt-40, 1):tt] # Resample

Figure 3: Reported case data (left) and corresponding R_t estimates (right) from the simple model (fit to all cases).

An improved example

We want to consider:

State-space transition model:

Figure 1: A diagram of a hidden Markov Model, a specific type of state-space model where X_t depends only upon X_{t-1} and y_t depends only on X_t .

Sequential Monte Carlo (SMC) methods

Goal: generate samples from posterior distribution $P(X_t|y_{1:T}, \theta)$. **Method:** start with N initial "particles" (samples) $\{x_0\}_{i=1}^N \sim P(X_0)$ and repeat three steps for each t = 1, ..., T:

- 1. Projection step: Sample $\tilde{x}_t^{(i)} \sim P(X_t | x_{1:t-1}^{(i)}, \theta)$
- 2. Weighting step: Set $W_t^{(i)} = P(y_t | \tilde{x}_{1:t}, y_{1:t-1}, \theta)$
- 3. Resampling step*: Resample $\{x_{1:t}^{(i)}\}_{i=1}^N$ from $\{\tilde{x}_{1:t}^{(i)}\}$ weighted by $\{W_t^{(i)}\}$

- Parameter uncertainty
- Imported cases
- Reporting noise
- ► Elimination
 - probabilities

Let's do it all at once!

 $\log R_t | \log R_{t-1}, \sigma \sim \mathsf{N}(\log R_{t-1}, \sigma) |$ $I_t | R_t, I_{1:t-1} \sim \mathsf{Poisson}(R_t \Lambda_t)$

Observation model:

 $C_t | I_t, \phi \sim \mathsf{NegBin}^*(\mu = I_t, \phi)$ *Negative binomial distribution with mean I_t and variance $I_t(1 + I_t \phi)$.

- \blacktriangleright $I_t = \text{local infections (unobs.)}$
- \blacktriangleright $M_t = \text{imported cases}$
- \blacktriangleright C_t = reported local cases
- $\blacktriangleright \Lambda_t = \sum_{u=1}^{u_{max}} \left(I_{t-u} + M_{t-u} \right) \omega_u$
- $\blacktriangleright \sigma = R_t$ smoothness
- $\phi = reporting overdispersion$

Parameter estimates (using PMMH): $\sigma = 0.19 (0.12, 0.30), \phi = 0.018 (0.001, 0.063)$

Figure 4: Probability of elimination (left, defined as no new local infections within next 28 days) and estimated R_t (right) for New Zealand, after accounting for imported cases, reporting noise, and parameter uncertainty. All three adjustments cause the substantial change in R_t estimates (with most credit going to the imported cases adjustment).

Figure 2: Diagram showing an SMC algorithm at time t with N = 5 particles (although typically $N \ge 1000$). The decreasing number of unique particles due to resampling ("degeneracy") is a common problem in SMC methods.

Note: Another algorithm called particle Marginal Metropolis Hastings (PMMH) is used to find $P(\theta|y_{1:T})$ (parameter estimation). This can be used to marginalise out parameter uncertainty from hidden-state estimates - a crucial step for robust estimation in any Bayesian method! [1].

Parameter uncertainty has been accounted for by finding $P(\sigma, \phi | C_{1:T})$ using PMMH and marginalising out these uncertainties from the hidden-state estimates.

References

- [1] Nicholas Steyn and Kris V. Parag. Robust uncertainty quantification in popular estimators of the instantaneous reproduction number, 2024.
- [2] Kris V. Parag. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. PLOS Computational Biology, 2021.
- [3] Sam Abbott et al. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Research, 2020.

nicsteyn2.github.io/SMCforRt/

We also highlight EpiNow2 [3] as a similarly-flexible alternative. Our methods are simpler (no mathematical approximations or need for Stan), while EpiNow2 is better for estimation of highdimensional θ .