References

Abbott, Sam, Joel Hellewell, Robin N. Thompson, Katharine Sherratt, Hamish P. Gibbs, Nikos I. Bosse, James D. Munday, et al. 2020. “Estimating the Time-Varying Reproduction Number of SARS-CoV-2 Using National and Subnational Case Counts.” Wellcome Open Research 5 (December): 112. https://doi.org/10.12688/wellcomeopenres.16006.2.
Azmon, Amin, Christel Faes, and Niel Hens. 2014. “On the Estimation of the Reproduction Number Based on Misreported Epidemic Data.” Statistics in Medicine 33 (7): 1176–92. https://doi.org/10.1002/sim.6015.
Banholzer, Nicolas, Thomas Mellan, H. Juliette T. Unwin, Stefan Feuerriegel, Swapnil Mishra, and Samir Bhatt. 2023. “A Comparison of Short-Term Probabilistic Forecasts for the Incidence of COVID-19 Using Mechanistic and Statistical Time Series Models.” arXiv. https://doi.org/10.48550/arXiv.2305.00933.
Cori, Anne, Neil M. Ferguson, Christophe Fraser, and Simon Cauchemez. 2013. “A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics.” American Journal of Epidemiology 178 (9): 1505–12. https://doi.org/10.1093/aje/kwt133.
Cori, Anne, and Adam Kucharski. 2024. “Inference of Epidemic Dynamics in the COVID-19 Era and Beyond.” Epidemics 48 (September): 100784. https://doi.org/10.1016/j.epidem.2024.100784.
Creal, Drew. 2012. “A Survey of Sequential Monte Carlo Methods for Economics and Finance.” Econometric Reviews 31 (3): 245–96. https://doi.org/10.1080/07474938.2011.607333.
Creswell, Richard, Martin Robinson, David Gavaghan, Kris V. Parag, Chon Lok Lei, and Ben Lambert. 2023. “A Bayesian Nonparametric Method for Detecting Rapid Changes in Disease Transmission.” Journal of Theoretical Biology 558 (February): 111351. https://doi.org/10.1016/j.jtbi.2022.111351.
Endo, Akira, Edwin van Leeuwen, and Marc Baguelin. 2019. “Introduction to Particle Markov-chain Monte Carlo for Disease Dynamics Modellers.” Epidemics 29 (December): 100363. https://doi.org/10.1016/j.epidem.2019.100363.
Evensen, Geir, Femke C. Vossepoel, and Peter Jan Van Leeuwen. 2022. Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem. Springer Textbooks in Earth Sciences, Geography and Environment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96709-3.
Ferguson, N, D Laydon, G Nedjati Gilani, N Imai, K Ainslie, M Baguelin, S Bhatia, et al. 2020. “Report 9: Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID19 Mortality and Healthcare Demand.” Imperial College London. https://doi.org/10.25561/77482.
Flaxman, Seth, Swapnil Mishra, Axel Gandy, H. Juliette T. Unwin, Thomas A. Mellan, Helen Coupland, Charles Whittaker, et al. 2020. “Estimating the Effects of Non-Pharmaceutical Interventions on COVID-19 in Europe.” Nature 584 (7820): 257–61. https://doi.org/10.1038/s41586-020-2405-7.
Ionides, E. L., C. Bretó, and A. A. King. 2006. “Inference for Nonlinear Dynamical Systems.” Proceedings of the National Academy of Sciences 103 (49): 18438–43. https://doi.org/10.1073/pnas.0603181103.
Ionides, Edward L., Anindya Bhadra, Yves Atchadé, and Aaron King. 2011. “Iterated Filtering.” The Annals of Statistics 39 (3). https://doi.org/10.1214/11-AOS886.
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King. 2015. “Inference for Dynamic and Latent Variable Models via Iterated, Perturbed Bayes Maps.” Proceedings of the National Academy of Sciences 112 (3): 719–24. https://doi.org/10.1073/pnas.1410597112.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and Nicolas Chopin. 2015. “On Particle Methods for Parameter Estimation in State-Space Models.” Statistical Science 30 (3): 328–51. https://doi.org/10.1214/14-STS511.
King, Aaron A., Dao Nguyen, and Edward L. Ionides. 2016. “Statistical Inference for Partially Observed Markov Processes via the R Package Pomp.” Journal of Statistical Software 69 (12). https://doi.org/10.18637/jss.v069.i12.
Ministry of Health NZ. 2024. “New Zealand COVID-19 Data.”
Nash, Rebecca K., Samir Bhatt, Anne Cori, and Pierre Nouvellet. 2023. “Estimating the Epidemic Reproduction Number from Temporally Aggregated Incidence Data: A Statistical Modelling Approach and Software Tool.” Edited by Eric Hy Lau. PLOS Computational Biology 19 (8): e1011439. https://doi.org/10.1371/journal.pcbi.1011439.
Ogi-Gittins, I., W. S. Hart, J. Song, R. K. Nash, J. Polonsky, A. Cori, E. M. Hill, and R. N. Thompson. 2024. “A Simulation-Based Approach for Estimating the Time-Dependent Reproduction Number from Temporally Aggregated Disease Incidence Time Series Data.” Epidemics 47: 100773. https://doi.org/10.1016/j.epidem.2024.100773.
Parag, Kris V. 2021. “Improved Estimation of Time-Varying Reproduction Numbers at Low Case Incidence and Between Epidemic Waves.” PLOS Computational Biology 17 (9): e1009347. https://doi.org/10.1371/journal.pcbi.1009347.
Parag, Kris V., Benjamin J. Cowling, and Christl A. Donnelly. 2021. “Deciphering Early-Warning Signals of SARS-CoV-2 Elimination and Resurgence from Limited Data at Multiple Scales.” Journal of The Royal Society Interface 18 (185): 20210569. https://doi.org/10.1098/rsif.2021.0569.
Särkkä, Simo. 2013. Bayesian Filtering and Smoothing. 1st ed. Cambridge University Press. https://doi.org/10.1017/CBO9781139344203.
Steyn, Nicholas, and Kris V. Parag. 2024. “Robust Uncertainty Quantification in Popular Estimators of the Instantaneous Reproduction Number.” medRxiv. https://doi.org/10.1101/2024.10.22.24315918.
Temfack, Dhorasso, and Jason Wyse. 2024. “A Review of Sequential Monte Carlo Methods for Real-Time Disease Modeling.” arXiv. https://doi.org/10.48550/ARXIV.2408.15739.
Thompson, R. N., J. E. Stockwin, R. D. van Gaalen, J. A. Polonsky, Z. N. Kamvar, P. A. Demarsh, E. Dahlqwist, et al. 2019. “Improved Inference of Time-Varying Reproduction Numbers During Infectious Disease Outbreaks.” Epidemics 29 (December): 100356. https://doi.org/10.1016/j.epidem.2019.100356.
Yang, Xian, Shuo Wang, Yuting Xing, Ling Li, Richard Yi Da Xu, Karl J. Friston, and Yike Guo. 2022. “Bayesian Data Assimilation for Estimating Instantaneous Reproduction Numbers During Epidemics: Applications to COVID-19.” PLOS Computational Biology 18 (2): e1009807. https://doi.org/10.1371/journal.pcbi.1009807.