References
Abbott, Sam, Joel Hellewell, Robin N. Thompson, Katharine Sherratt,
Hamish P. Gibbs, Nikos I. Bosse, James D. Munday, et al. 2020.
“Estimating the Time-Varying Reproduction Number of
SARS-CoV-2 Using National and Subnational Case
Counts.” Wellcome Open Research 5 (December): 112. https://doi.org/10.12688/wellcomeopenres.16006.2.
Azmon, Amin, Christel Faes, and Niel Hens. 2014. “On the
Estimation of the Reproduction Number Based on Misreported Epidemic
Data.” Statistics in Medicine 33 (7): 1176–92. https://doi.org/10.1002/sim.6015.
Banholzer, Nicolas, Thomas Mellan, H. Juliette T. Unwin, Stefan
Feuerriegel, Swapnil Mishra, and Samir Bhatt. 2023. “A Comparison
of Short-Term Probabilistic Forecasts for the Incidence of
COVID-19 Using Mechanistic and Statistical Time Series
Models.” arXiv. https://doi.org/10.48550/arXiv.2305.00933.
Cori, Anne, Neil M. Ferguson, Christophe Fraser, and Simon Cauchemez.
2013. “A New Framework and Software to
Estimate Time-Varying Reproduction Numbers During
Epidemics.” American Journal of Epidemiology 178
(9): 1505–12. https://doi.org/10.1093/aje/kwt133.
Cori, Anne, and Adam Kucharski. 2024. “Inference of Epidemic
Dynamics in the COVID-19 Era and Beyond.”
Epidemics 48 (September): 100784. https://doi.org/10.1016/j.epidem.2024.100784.
Creal, Drew. 2012. “A Survey of Sequential
Monte Carlo Methods for Economics and
Finance.” Econometric Reviews 31 (3):
245–96. https://doi.org/10.1080/07474938.2011.607333.
Creswell, Richard, Martin Robinson, David Gavaghan, Kris V. Parag, Chon
Lok Lei, and Ben Lambert. 2023. “A Bayesian
Nonparametric Method for Detecting Rapid Changes in Disease
Transmission.” Journal of Theoretical Biology 558
(February): 111351. https://doi.org/10.1016/j.jtbi.2022.111351.
Endo, Akira, Edwin van Leeuwen, and Marc Baguelin. 2019.
“Introduction to Particle Markov-chain Monte
Carlo for Disease Dynamics Modellers.” Epidemics
29 (December): 100363. https://doi.org/10.1016/j.epidem.2019.100363.
Evensen, Geir, Femke C. Vossepoel, and Peter Jan Van Leeuwen. 2022.
Data Assimilation Fundamentals: A Unified
Formulation of the State and Parameter
Estimation Problem. Springer Textbooks in
Earth Sciences, Geography and
Environment. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96709-3.
Ferguson, N, D Laydon, G Nedjati Gilani, N Imai, K Ainslie, M Baguelin,
S Bhatia, et al. 2020. “Report 9: Impact of
Non-Pharmaceutical Interventions (NPIs) to Reduce
COVID19 Mortality and Healthcare Demand.” Imperial
College London. https://doi.org/10.25561/77482.
Flaxman, Seth, Swapnil Mishra, Axel Gandy, H. Juliette T. Unwin, Thomas
A. Mellan, Helen Coupland, Charles Whittaker, et al. 2020.
“Estimating the Effects of Non-Pharmaceutical Interventions on
COVID-19 in Europe.” Nature
584 (7820): 257–61. https://doi.org/10.1038/s41586-020-2405-7.
Ionides, E. L., C. Bretó, and A. A. King. 2006. “Inference for
Nonlinear Dynamical Systems.” Proceedings of the National
Academy of Sciences 103 (49): 18438–43. https://doi.org/10.1073/pnas.0603181103.
Ionides, Edward L., Anindya Bhadra, Yves Atchadé, and Aaron King. 2011.
“Iterated Filtering.” The Annals of Statistics 39
(3). https://doi.org/10.1214/11-AOS886.
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron
A. King. 2015. “Inference for Dynamic and Latent Variable Models
via Iterated, Perturbed Bayes Maps.” Proceedings
of the National Academy of Sciences 112 (3): 719–24. https://doi.org/10.1073/pnas.1410597112.
Kantas, Nikolas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and
Nicolas Chopin. 2015. “On Particle Methods for
Parameter Estimation in State-Space
Models.” Statistical Science 30 (3): 328–51. https://doi.org/10.1214/14-STS511.
King, Aaron A., Dao Nguyen, and Edward L. Ionides. 2016.
“Statistical Inference for Partially Observed
Markov Processes via the R
Package Pomp.”
Journal of Statistical Software 69 (12). https://doi.org/10.18637/jss.v069.i12.
Ministry of Health NZ. 2024. “New Zealand COVID-19
Data.”
Nash, Rebecca K., Samir Bhatt, Anne Cori, and Pierre Nouvellet. 2023.
“Estimating the Epidemic Reproduction Number from Temporally
Aggregated Incidence Data: A Statistical Modelling Approach
and Software Tool.” Edited by Eric Hy Lau. PLOS Computational
Biology 19 (8): e1011439. https://doi.org/10.1371/journal.pcbi.1011439.
Ogi-Gittins, I., W. S. Hart, J. Song, R. K. Nash, J. Polonsky, A. Cori,
E. M. Hill, and R. N. Thompson. 2024. “A Simulation-Based Approach
for Estimating the Time-Dependent Reproduction Number from Temporally
Aggregated Disease Incidence Time Series Data.”
Epidemics 47: 100773. https://doi.org/10.1016/j.epidem.2024.100773.
Parag, Kris V. 2021. “Improved Estimation of Time-Varying
Reproduction Numbers at Low Case Incidence and Between Epidemic
Waves.” PLOS Computational Biology 17 (9): e1009347. https://doi.org/10.1371/journal.pcbi.1009347.
Parag, Kris V., Benjamin J. Cowling, and Christl A. Donnelly. 2021.
“Deciphering Early-Warning Signals of SARS-CoV-2
Elimination and Resurgence from Limited Data at Multiple Scales.”
Journal of The Royal Society Interface 18 (185): 20210569. https://doi.org/10.1098/rsif.2021.0569.
Särkkä, Simo. 2013. Bayesian Filtering and
Smoothing. 1st ed. Cambridge University Press. https://doi.org/10.1017/CBO9781139344203.
Steyn, Nicholas, and Kris V. Parag. 2024. “Robust Uncertainty
Quantification in Popular Estimators of the Instantaneous Reproduction
Number.” medRxiv. https://doi.org/10.1101/2024.10.22.24315918.
Temfack, Dhorasso, and Jason Wyse. 2024. “A Review of Sequential
Monte Carlo Methods for Real-Time Disease Modeling.”
arXiv. https://doi.org/10.48550/ARXIV.2408.15739.
Thompson, R. N., J. E. Stockwin, R. D. van Gaalen, J. A. Polonsky, Z. N.
Kamvar, P. A. Demarsh, E. Dahlqwist, et al. 2019. “Improved
Inference of Time-Varying Reproduction Numbers During Infectious Disease
Outbreaks.” Epidemics 29 (December): 100356. https://doi.org/10.1016/j.epidem.2019.100356.
Yang, Xian, Shuo Wang, Yuting Xing, Ling Li, Richard Yi Da Xu, Karl J.
Friston, and Yike Guo. 2022. “Bayesian Data Assimilation for
Estimating Instantaneous Reproduction Numbers During Epidemics:
Applications to COVID-19.” PLOS
Computational Biology 18 (2): e1009807. https://doi.org/10.1371/journal.pcbi.1009807.